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ABSTRACT 
Detection of a known target in an image has several different approaches. The complexity and number of steps 
involved in the target detection process makes a comparison of the different possible algorithm chains desirable. 
Of the different steps involved, some have a more significant impact than others on the final result - the ability 
to find a target in an image. These more important steps often include atmospheric compensation, noise and 
dimensionality reduction, background characterization, and detection (matched filtering for this research). A 
brief overview of the algorithms to be compared for each step will be presented. 

This research seeks to identify the most effective set of algorithms for a particular image or target type. Several 
different algorithms for each step will be presented, to include ELM, FLAASH, MNF, PPI, MAXD, the structured 
background matched filters OSP, and ASD. The chains generated by these algorithms will be compared using the 
Forest Radiance I HYDICE data set. Finally, receiver operating characteristic (ROC) curves will be calculated 
for each algorithm chain and, as an end result, a comparison of the various algorithm chains will be presented. 

Keywords: ELM, FLAASH, MNF, PPI, MAXD, OSP, ASD, target detection 

1. INTRODUCTION 

Detection of known substances, or targets, is a very common problem in hyperspectral imaging (HSI). Given 
a target with a known spectral signature, an algorithm that can decide if and where that target is present in 
an image is needed. In order to accomplish this, matched filters or target detectors have been developed to 
accentuate pixels in an image that contain the target. 

There are several unique steps to any target detection algorithm. Each of these steps plays a role in deter- 
mining the overall performance of the target detector. Figure 1 is a flow chart detailing each of these steps for a 
generic target detection algorithm chain. For each individual step along the way, there are several algorithms that 
will return an acceptable solution. It is desired to determine the best algorithm to accomplish each step. This 
is where hybridization comes in. A particular combination of algorithms may work well for one image or target 
but may also perform terribly for a different image or target. Finding an optimal combination of algorithms - 
or recipes - becomes an intriguing dilemma. In order to best accomplish this, commonly used algorithms for 
each step must be looked at and compared to each other for many different image/target combinations. This 
paper will discuss in detail some of the different algorithms used for each step of the target detection process. 
Background and theoretical explanation of the algorithms will be discussed followed by results, in the form of 
ROC curves, that will compare several unique algorithm chains. 

1.1. Data Set 

The data set being used for this paper is the "Forest Radiance 1" scene collected by the HYDICE sensor. The 
image dimensions are 320x1280 with 145 spectral bands covering the spectrum from approximately 350nm to 
2500nm. Two targets will be used to compare the algorithm chains, one of which is "easy" to find and one of 
which is slightly more difficult to find. There are many man made targets placed into this scene. In order to 
determine the overall difficultly of detection, the Spectral Angle Mapper (SAM) detection algorithm was run 
for each target in the scene.  SAM is a very basic target detection algorithm that relies on the spectral angle 
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Figure 1. Typical target detection algorithm flow chart 



between the target and pixel in question to determine if the target is present. Equation 1 is the mathematical 
representation of this detector 

TSAM{X) = 
(Fx 

(drd)i/2(a;Ta;)i/2 (1) 

where d is the target spectra and x is the pixel in question. For the purposes of this paper, the SAM results 
were only used to determine the targets to be used for comparison and to provide a baseline ROC curve (i.e. if 
an algorithm chain cannot outperform SAM it is not really worth looking at). 

A second basic matched filter is the Generalized Likelihood Ratio Test (GLRT). The results returned by this 
matched filter will also be used for comparison purposes. The GLRT relies on an unstructured, or stochastic, 
representation of the background in the image in the form of a covariance matrix. The equation for GLRT is 
shown in Equation 2: 

(2) 

where d and x are "the same as Equation 1 and S is the covariance matrix used. The GLRT results shown were 
generated using the covariance of the "tree" class of pixels in the image. 

Based on the results of these two matched filters, the "easy" target, Target A, had an average false alarm rate 
(AFAR) of 0.003313271 for SAM and 0.009138755 for the GLRT. The lower the AFAR, the easier the target is to 
detect. The AFAR is defined as the average number of false alarms encountered for each target pixel detected. 
The "difficult" target. Target B had AFARs of 0.023396362 and 0.076723623 for SAM and GLRT respectively. 
Figure 2 is a simple three band RGB image of the data set and also shows the spatial locations of the targets 
being used. 

Figure 2. Spatial locations of "easy" target A and "difficult" target B in the Forest Radiance 1 scene 

By simply looking at the image, it can be seen that, barring the planted targets, the scene is very uncluttered 
with very little man-made material. There are only about six or seven different classes of pixels present in the 
image and several of those are rather similar (i.e. light and dark grass are considered unique classes). Secondly, 
there are no "concealed" target pixels, all of them are out in the open and completely uncovered. There are 
both fully resolved and sub-pixel target pixels for both targets.   For the purposes of this paper, all planted 



targets in the image except for Targets A and B have been masked out for the detection results and background 
characterization. All pixels with any amount of target present are searched for and counted as part of the 
probability of detection statistic. 

2. ATMOSPHERIC COMPENSATION 

Atmospheric compensation is the process of "taking the atmosphere out of the image". The known spectral 
signature of the targets consist of measured reflectance values. These measurements cannot take into account 
the effects of looking through thousands of feet worth of atmosphere. The ultimate goal of the atmospheric 
compensation process is to retrieve reflectance from the radiance recorded by the sensor. The following sections 
will briefly outline the theory behind the two atmospheric compensation methods used. 

2.1. Empirical Line Method (ELM) 

The ELM relies on ground truth inasmuch as at least two different regions in the image (preferably one dark and 
one light across each wavelength) must have a knOwn reflectivity. These regions must be at least one pixel large. 
Ideally, the regions should have corresponding ground truth reflectance spectra taken at the same time as the 
image. If such regions are not present in the image, an educated guess can be made by selection of regions for 
which an approximate reflectance can be created. For example, a white cloud may have a reflectivity of about 
90% across all wavelengths. Obviously, there is a great opportunity for error introduction if estimates have to' 
be made, but that can be limited if they are made smartly. The Forest Radiance 1 image has calibration panels 
present and the values measured from those panels were used the determine the ELM compensation. 

Once the two (or more) regions have been selected, a line is fit through the radiance (or digital counts) vs 
reflectivity points in each band. ELM assumes a linear relationship between the radiance (or digital counts) and 
the reflectivity. Mathematically, this relationship is expressed Equation 3 

L = mR{X) + b (3) 

where L is the observed radiance (or digital count), m is the slope of the line through the ground truth points, 
R{X) is the wavelength dependent reflectance, and b is the radiance (or digital count) value that represents zero 
reflectance. Figure 3 illustrates this relationship graphically. 
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Figure 3. Graphical representation of ELM for two bands. The marked points are the "ground truth" points 

Now, the observed radiance in every pixel in the image can be converted into reflectance using the linear 
regression coefficients (m and b) obtained via Equation 3. It is important to note that ELM can work with both 
radiance or digital counts without calibration. 



2.2. Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

FLAASH is a commercially available atmospheric compensation algorithm developed by the Air Force Research 
Laboratory, Space Vehicles Directorate (AFRL/VS) to support the analysis of visible to shortwave infrared (0.4 
fj.m to 2Anm) hyperspectral and multispectral sensors [Berk et al., 2002]. Using atmospheric inversion, FLAASH 
is able to determine the aerosol and water vapor content of the atmosphere in an image as well as the surface 
pressure. 

Equation 4 [Berk et al., 2002] is the sensor reaching radiance (i*) equation utilized by FLAASH: 

where p is the pixel surface reflectance, pe is an average surface reflectance for the area surrounding the pixel 
in question, S is the spherical albedo of the atmosphere (accounting for the skylight photons), L* is the up- 
welled radiance, A and B are surface independent coefRcients that vary based on the atmospheric and geometric 
conditions. All of the variables are implicitly wavelength dependent. 

The per-pixel A, B, S, and L* variables are all determined empirically via MODTRAN. Once these values 
have been extracted. Equation 5 is used to solve for pe [Berk et al., 2002]: 

(£+S)Pe 

where L* is a spatially averaged sensor reaching radiance value. Once pe has been determined. Equation 4 can 
be solved for reflectance (p). 

3. MAXIMUM NOISE FRACTION (MNF) 

Only one algorithm for dimensionality/noise reduction will be looked at in this paper, the Maximum Noise 
Fraction (MNF) [Green et al., 1988]. Essentially, the MNF algorithm is the same as the Principle Components 
Analysis process with some "pre-processing" steps added. For the MNF transform, the covariance matrix of the 
noise present is needed. In order to obtain this (since it is not usually known), a spectrally flat field can be used. 
Once a flat field is identified within an image, the mean can be subtracted from the observed values of that field. 
The result is a representation of the noise present in the image. Once this "noise image" is found, its covariance 
matrix can be calculated. If a flat noise field cannot be found, the ENVI implementation of MNF allows for the 
noise statistics to be computed from the image. 

The next step in this process is basically to perform PGA on the noise image to de-correlate the noise. This is 
done by calculating the eigenvectors of the noise image. By definition, the resulting eigenvectors are orthogonal 
to each other. The original image can now be "passed through" this orthogonal transformation. After this 
is done, the orthogonally transformed image can be whitened, or normalized, by the eigenvalues of the noise 
covariance matrix. The final result of all these steps is an image in which all of the noise present is orthogonal 
and identical. Now, the PGA previously described can be performed. 

The advantage of the MNF transform is that the "pre-processing" steps force the assumption used in PGA 
of variance representing information to be true. There is now equal variance present due to noise in the image. 
The bands are rank ordered by the signal to noise ratios and the highest PG bands are retained. The result is a 
greatly reduced dimension space with little noise to interfere with target detection. 

4. ENDMEMBER SELECTION 

There are two overarching ways to characterize the background of an image: structured or unstructured. While 
an unstructured matched filter (GLRT) was used in determining the targets used and for comparison purposes, 
this paper will focus on matched filters that employ a structured background. Two related endmember selection 
algorithms will be compared in this paper. 



4.1. Pixel Purity Index (PPI) 
The first end member selection algorithm is the Pixel Purity Index (PPI) method [Boardman et al., 1995]. Using 
PPI, all of the pixel values in an image are projected onto randomly selected vectors. Each time a projection is 
accomplished, the extrema points are noted. Spectrally pure pixels will consistently be extrema points of these 
random projections. A major assumption of this method is that spectrally pure pixels in the image are end 
members. This is generally not a bad assumption. This method is also rather susceptible to noise, so steps {e.g. 
thresholding) should be taken to help lessen the negative effects of noisy pixels. Figure 4 is an example projection 
of data points. ENVI uses a threshold factor to help mitigate noise interference. The threshold factor determines 
the amount of pixels other than strictly the extrema pixels are considered - pixels within the threshold factor of 
the extrema pixels are considered extrema as well. 

Figure 4. Example PPI projection [Boardman et al., 1995] 

For this paper, the PPI implementation in ENVI was used. Using ENVI, the PPI endmember selection 
process is not fully automated and does require a "man-in-the-loop". Once the desired number of iterations 
(normally several thousand) are completed, every pixel that was found as an extrema at least once is returned. 
It is up to the user to determine how many times a pixel must be found to be considered significant. Once this 
is completed, the significant pixels must be clustered. The amount of spectral clusters determine the number of 
endmembers in the image. All of this is done by the user. Finally, an endmember is extracted by taking the 
mean of each cluster. 

4.2. MAXD 
The second end member selection technique is MAXD [Lee, 2003]. Similar to PPI, MAXD also uses projection 
to help sort out the end members of an image. Given a set of data points, MAXD begins by selecting the points 
that have the maximum and minimum Euclidean distance from the origin. These two points are the first two 
end members. Once these points are selected, all of the data points are projected onto a vector orthogonal to 
both of the vectors already selected. This process is repeated until the desired number of end members is found. 
Figure 5 pictorially explains how this process works. 

Unlike PPI, MAXD is used as a fully automated process where the only user input is the number of end- 
members to be found. The clustering step in PPI is not needed for MAXD. 

5. MATCHED FILTERS 
The ultimate goal of the target detection algorithm chain is target detection. The means to accomplish target 
detection in this case are matched filters. Two similar but different structured background matched filters 
compared in this paper are the Orthogonal Subspace Projector (OSP) and the Adaptive Subspace Detector 
(ASD). 



5.1. Orthogonal Subspace Projector (OSP) 

The first matched filter discussed OSP. Equation 6 represents the OSP detector. 

Tosp{x) = 
dPbX 

(6) (FPbd 

where d is the desired target vector and all of the other variables are the same as those defined for Equation 7. 

OSP projects each pixel iiito a space orthogonal the the background of the image which is represented by the 
endmembers extracted. This, in theory, forces the target pixels to "stick out" from the background. The pixels 
that most closely match the given target spectra are given a high TQSP value. 

5.2. Adaptive Subspace Detector (ASD) 

A second implementation of a structured background model detector the ASD. This detector is represented 
mathematically by Equation 7: 

TASD{X) 
x'^jPb - Ps)x 

x^Psx (7) 

where Pb = I - U{U'^U)-W^ and Ps = I - S'(S^5)5^ and S = [dU]. In words, Ptx is the projection of the 
pixel, X, onto the vector orthogonal to the background subspace. 

As with the OSP matched filter, Pb is the projection of the pixel onto a space orthogonal to the background. 
The major difference between OSP and ASD is the Ps term in ASD. This is the projection of the pixel onto a 
space orthogonal to the background and the target. The difference between these two projections is a measure 
of just how "target-like" the pixel is. 

6. RESULTS 

6.1. Experiment 

The first step in the algorithm chains is atmospheric compensation. The "Forest Radiance 1" was atmospherically 
compensated using both the ELM and FLA ASH methods discussed in Section 2. The second step is noise 
and dimensionality reduction. This is accomplished using the MNF transform outlined in Section 3. The 
implementation available in ENVI was used for this paper. The option to "estimate noise statistics from data" 
provided by ENVI was used to obtain a noise spectrum for the transform. For both atmospherically compensated 
images, over 98% of the total variability was retained resulting in keeping 136 and 137 bands for the ELM image 
and FLAASH image respectively. 
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Figure 5. MAXD end member selection algorithm [Lee, 2003] 



As mentioned in Section 4, PPI and MAXD were used to extract endmembers to characterize the background 
of the image. The procedure for usage of the PPI appHcation in ENVI discussed in Section 4.1 was followed using 
30,000 iterations and a threshold factor of 2. Seven different classes were found in the clustering step, resulting 
in a background matrix consisting of 7 endmembers. The MAXD algorithm is not currently available in ENVI, 
so IDL was used. The only user input necessary for MAXD is the number of endmembers to be found, for this 
image, 20 endmembers were found. 

Finally, each image/background combination was used with the matched filters presented in Section 5. Figure 
6 is the ROC curves that resulted from each combination for the two targets as well as the SAM and GLRT 
results for comparison purposes. - 
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Figure 6. Resulting ROC curves and AFAR for the various algorithm chains 

6.2. Conclusions 

Overall, there were no results that seemed particularly telling. For Target A, the "easy" target, all of the chains 
performed comparably with the exception of one, the FLAASH-MNF-MAXD-OSP chain. Looking at the Target 
B results, this chain underachieved a little there as well. This logically leads to the conclusion that that group 
of algorithms do not work together well. On the other hand, there did not seem to be one particularly stellar 
preforming chain of algorithms either. Quite surprisingly, the detector that was able to detect the more difficult 
Target B was SAM. SAM is not dependent on any background characterization and is generally considered the 
absolute baseline for detection performance. 

It was expected that the chains using ELM would have greatly outperformed the chains using FLAASH due to 
the fact that good ground truth went into the ELM calculation. While this is generally true for the two targets, 
a much greater difference would have been expected. It would be interesting to repeat the experiment using 
ELM on the scene without Using the collected ground truth and see if the results change drastically. Another 
intriguing question is what the results would look like for a much more cluttered (i.e. urban) scene. 



7. SUMMARY 

This paper is intended to be an exploration of different algorithm chains, lending itself to more ongoing research 
looking at many more unique chains. The goal of the research is to try to pre-determine the best set of algorithms 
to solve a target detection problem for any given image and/or target. A few future work problems were brought 
up in Section 6.2, and many more have arisen based on this small piece of the much larger pie. 
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